Skip to main content

Neurobehavioral aspects of omega-3 fatty acids: possible mechanisms and therapeutic value in major depression Alternative Medicine Review - Find Artic

Neurobehavioral aspects of omega-3 fatty acids: possible mechanisms and therapeutic value in major depression Alternative Medicine Review - Find Articles

Omega-3 fatty acids are an essential component of CNS membrane phospholipid-acyl chains and, as such, are critical to the dynamic structure of neuronal membranes. (3) DHA is continuously secreted by astrocytes, bathing the neuron in omega-3 fatty acid. (58) The binding of serotonin to the astroglial 5HT2A receptor can mobilize DHA to supply the neuron. (59) Alterations in membrane lipids can alter function by changing fluidity. Proteins are embedded in the lipid bi-layer and the conformation or quaternary structure of these proteins appears to be sensitive to the lipid microenvironment. The proteins in the bi-layer have critical cellular functions, acting as receptors, enzymes, and transporters. (60-64) In addition, EFAs can act as sources for second messengers within and between neurons. (65) An optimal fluidity is required for neurotransmitter binding and the signaling within the cell. (66) Omega-3 fatty acids can alter neuronal fluidity by displacing cholesterol from the membrane. (67)

It is not surprising there are functional consequences when animals are fed a diet deficient in omega-3 fatty acids (Table 3). Reduction in omega-3 intake (in the form of ALA) results in a reduction of omega-3 content throughout the brain cells and organelles along with a compensatory rise in omega-6 fatty acid content. This alteration is accompanied by a 40-percent reduction in the [Na.sup.+][K.sup.+] ATPase of nerve terminals, an enzyme that controls ion transport produced by nerve transmission and that consumes half the energy used by the brain. (63) There is also a 20-percent reduction in 5'-nucleotidase activity, a decrease in fluidity in the surface polar part of the membrane, (63) and a significant reduction in the cell body size of the hippocampal CA1 pyramidal neuron. (68) A 30-percent reduction in the average densities of synaptic vesicles in the terminals of the hippocampal CA1 region has also been observed as a result of an omega-3 deficiency combined with a learning task. (69) Deficiency of omega-3s also results in a 30-35 percent reduction in phosphatidylserine (PS) in the rat brain cortex, brain mitochondria, and olfactory bulb. (70) On the other hand, fish oil supplemented to rats can increase PS composition of the cerebral membrane. (71) This is an interesting finding, given research showing that PS has antidepressant activity in adults. (72,73) PS can activate various enzymes, including protein kinase C, [Na.sup.+][K.sup.+] ATPase, and tyrosine hydroxylase, as well as regulating calcium uptake. It is therefore suggested that altering PS in cerebral membranes can alter neurotransmission. (71)

A number of studies have specifically examined the effect of an omega-3 deficient diet on dopamine and serotonin levels in animals. Animals on such a diet have a reduction in the dopaminergic vesicle pool (74) along with a 40-60 percent decrease in the amount of dopamine in the frontal cortex and an increase in the NA, (75,76) alterations strikingly similar to the animal models of depression described above. Although overall dopamine levels in the NA are higher in an omega-3 deficiency and the animal model of depression, function of the NA-dopaminergic system appears to be abnormal in both. In an omega-3 deficiency, the release of dopamine from the vesicular storage pool under tyramine stimulation is 90-percent lower than in rats receiving an adequate omega-3 intake. (74) In the animal model of depression, although overall NA-dopamine levels are higher, the extracellular levels of dopamine in the NA are lower than normal controls and do not respond to normal serotonin stimulation. (77)

Comments

Popular posts from this blog

Insulin Resistance- cause of ADD, diabetes, narcolepsy, etc etc

Insulin Resistance Insulin Resistance Have you been diagnosed with clinical depression? Heart disease? Type II, or adult, diabetes? Narcolepsy? Are you, or do you think you might be, an alcoholic? Do you gain weight around your middle in spite of faithfully dieting? Are you unable to lose weight? Does your child have ADHD? If you have any one of these symptoms, I wrote this article for you. Believe it or not, the same thing can cause all of the above symptoms. I am not a medical professional. I am not a nutritionist. The conclusions I have drawn from my own experience and observations are not rocket science. A diagnosis of clinical depression is as ordinary as the common cold today. Prescriptions for Prozac, Zoloft, Wellbutrin, etc., are written every day. Genuine clinical depression is a very serious condition caused by serotonin levels in the brain. I am not certain, however, that every diagnosis of depression is the real thing. My guess is that about 10 percent of the people taking

Could Narcolepsy be caused by gluten? :: Kitchen Table Hypothesis

Kitchen Table Hypothesis from www.zombieinstitute.net - Heidi's new site It's commonly known that a severe allergy to peanuts can cause death within minutes. What if there were an allergy that were delayed for hours and caused people to fall asleep instead? That is what I believe is happening in people with Narcolepsy. Celiac disease is an allergy to gliadin, a specific gluten protein found in grains such as wheat, barley and rye. In celiac disease the IgA antigliadin antibody is produced after ingestion of gluten. It attacks the gluten, but also mistakenly binds to and creates an immune reaction in the cells of the small intestine causing severe damage. There is another form of gluten intolerance, Dermatitis Herpetiformis, in which the IgA antigliadin bind to proteins in the skin, causing blisters, itching and pain. This can occur without any signs of intestinal damage. Non-celiac gluten sensitivity is a similar autoimmune reaction to gliadin, however it usually involves the

Blue-blocking Glasses To Improve Sleep And ADHD Symptoms Developed

Blue-blocking Glasses To Improve Sleep And ADHD Symptoms Developed Scientists at John Carroll University, working in its Lighting Innovations Institute, have developed an affordable accessory that appears to reduce the symptoms of ADHD. Their discovery also has also been shown to improve sleep patterns among people who have difficulty falling asleep. The John Carroll researchers have created glasses designed to block blue light, therefore altering a person's circadian rhythm, which leads to improvement in ADHD symptoms and sleep disorders. […] How the Glasses Work The individual puts on the glasses a couple of hours ahead of bedtime, advancing the circadian rhythm. The special glasses block the blue rays that cause a delay in the start of the flow of melatonin, the sleep hormone. Normally, melatonin flow doesn't begin until after the individual goes into darkness. Studies indicate that promoting the earlier release of melatonin results in a marked decline of ADHD symptoms. Bett